QE-R Solar Cell Quantum Efficiency Measurement System

Model : QE-R

  • Designed in accordance with IEC 60904-1, 60904-7, 60904-8.
    • Can measure Spectral Response and External Quantum Efficiency. 
    • White Light Bias Intensity can reach 0 to 3 solar constants (The same grade as Fraunhofer ISE). 
    • Automatic zero-bias function provides a stable short-circuit condition for the solar cell under testing. 
    • Integrated system, easy to operate or install.
    • Auto band-gap calculation, provides critical material characteristics. 
    • The system can provide customers the most accurate correction parameters by calculating mismatch factor.
    • Provides the most accurate calculation of the whole spectrum short-circuit current density by auto-interlace method.
    • Short-circuit current density spectrum can be the reference for material analysis and process improvement.
    • Provides IQE calculation function. Customers can input the reflectivity of the device to obtain the IQE information.
  • High-efficiency light elliptical reflector:
    • Light collection efficiency > 70 %
    • Provides accurate and stable measurement.
  • Czerny-Turner multi-diffraction gratings monochromator: 
    • Low stray light <10-5
    • High stability and fast scan rate. 
    • Spectral range can reach 200 nm ~ 2000 nm.
  • Dual-beam optical design:
    • The same design as NIM, NIST and PTB.
    • Monitors the light intensity while acquiring the current signal, which ensures the measurement accuracy. 
  • Signal multiplexer:
    • QE-R integrates computer-controlled signal switching multiplexer. 
    • Helps customers reduce wiring errors.
  • Signal-to-noise ratio can reach 100 dB, the result of the overall system optimization.
  • DC mode function for DSSC solar cells.
  • High uniformity detector.
Item Specifications
Quantum Efficiency Measurement System a. Wavelength range:300-1100nm (can be extended)
b. Repeatability:
  • From 300 to 390 nm is ≧±99.4%
  • From 400 to 1000nm is ≧±99.6%
  • The other wavelength ≧±99%
c. The repeatability of short-circuit current density is ≧±99.6%
d. The repeatability= 100% * (max - min)/(max + min)
e. Measurement time: less than 3 minutes from 300-1100 nm (scan interval: 10 nm)
f. Shielding Enclosure: 60 cm
Lamp System a. 75 W high stable Xenon lamp with elliptical reflector system and cooling system
b. Provide 300-2000 nm continuous light
c. The deviation is less than 1%
d. Equipped with three-axis adjustment knob
e. 75 W Xe lamp power supply
f. Lamp timer
Monochromator a. Czerny-Turner monochromator
b. Focal length: <120 mm
c. F/#: ≦3.9
d. Stray light <10-5
e. Wavelength resolution: ≦1%
f. Scanning step: 0.1 nm-50 nm, normally 10 nm
Optical System a. Illumination light spot: 1 x 1 mm or 1 x 4 mm, adjustable
b. Irradiation method: from the top to the bottom. Easy for place and measure the samples.
c. Reflector Reflectivity: >75% for full wavelength range
d. Monochromatic light intensity: 2 mW/cm2 @ 530 nm
e. Incident angle: 8°
f. 有Efficient working distance: >10 cm
Chopper a. Frequency: 4~500 Hz
b. Can be controlled by computer
c. Resolution: 0.01 Hz, stability: < ±0.05 Hz
d. Stabilization period: <3 seconds
Filter Wheel a. Optical controlled filter wheel
b. Can be controlled manually and automatically
c. LED display to indicate the present filter setting position
d. Equipped with 4 filters
Lock-in Amplifier a. Two DSP lock-in amplifiers
b. Maximum acquisition speed <25 us (signal)
c. Two DSP simultaneous working mode speed <50 us
d. Time delay between two amplifier <1 us
e. Time constant: 0.001~100 sec, user setting
f. Roll-off filter
g. RXYθ measurement function
h. Interface: USB
i. Maximum gain: 107
j. Maximum sensitivity: 1nA
k. Maximum input voltage: 10V
l. Bandpass filter function can filter the interfering signal automatically
m. Automatic channel switch function
Calibration Detector a. Si detector 300-1100nm
b. BNC connector
c. 10 x 10 mm2, non-uniformity: 5 ‰
d. NIST traceable report
e. Computer controlled detector channel
Monitor Module a. Standard monitoring module
b. Monitoring range: similar to EQE wavelength range
c. Lock-in amplifier for feedback circuit
d. DSP lock-in input
e. Immediate monitoring ability
Software a. Light intensity calibration
b. Spectral response measurement and external quantum efficiency measurement
c. Automatic and immediate short-circuit current density calculation
d. Automatic short-circuit current calculation for single wavelength
e. Internal quantum efficiency calculation software br /> f. Band gap analysis
g. Data collection and analysis function
h. Spectral mismatch factor calculation
i. Signal monitoring function
j. TXT data saved formula
Oscilloscope Module a. Oscilloscope display window
b. Ability of time domain signal and frequency domain signal analysis and displaying
c. Maximum time domain: 10 S
d. Signal monitoring function: can monitor the photon current variation of test sample
e. Two independent channels for EQE and IQE
f. Analog input resolution: 14 Bits (ADC: Analog Digital Converter)
g. Maximum resolution of sampling rate: 48KS/s
h. Maximum voltage display: ±10V, accuracy: 7.73 mV
i. Minimum read current: 1nA
Computer a. Computer with LCD monitor
b. Official Windows 7
c. RS232 communication port
Shielding Enclosure a. Compact system
b. Shielding enclosure to avoid the stray light
c. 60 cm operation space

Optional Model Optional Item Specification
QE-R-RCG3018 EQE Measurement Extend to 1800nm a. EQE measurement for NIR range
b. Standard Ge detector for 900-1800 nm
c. System wavelength range: 300-1800 nm
d. Lock-in channel for Ge detector
e. With calibration report
f. Software for NIR range
QE-R-IS3011 Internal Quantum Efficiency Measurement Function a. 2” integrating sphere with barium sulfide coating material
b. Integrating sphere aperture: 1.4 cm
c. Incident angle: 8°
d. IQE and EQE can be measured at the same point
e. Reflectivity and internal quantum efficiency measurement function
f. Measurement range: 300-1100 nm
g. Si detector
h. Standard reflection white board with traceable report
i. Average repeatability ≧±99%
j. Illumination area: same size as EQE
QE-R-IS3018 Internal Quantum Efficiency Measurement Function a. 2” integrating sphere with barium sulfide coating material
b. Integrating sphere aperture: 1.4 cm
c. Incident angle: 8°
d. IQE and EQE can be measured at the same point
e. Reflectivity and internal quantum efficiency measurement function
f. Measurement range: 300-1800 nm
g. Si/Ge detector
h. Standard reflection white board with traceable report
i. Average repeatability ≧±99%< br /> j. Illumination area: same size as EQE
QE-R-T Transmission Measurement Function a. Transmission measurement stage. The height is adjustable< br /> b. Integrating sphere mode
c. Measurement wavelength is similar to IQE
d. Light spot is similar to EQE
QE-R-DC DC Mode a. DC mode
b. Mechanical switcher bar and users can change from AC mode to DC mode in 1 second
c. DC mode software
  • Measurement delay setting
  • Support multiple acquisition and average
  • Instant data display
d. Active low-frequency pass filter @ 1k Hz
e. Default Gain setting: >106
f. Acquisition precision >14 bit
g. Acquisition speed >50 us per point
h. Max acquisition points >10,000
i. The repeatability ≧±99%
QE-R-DL Dual-lamp System a. 75W Xe and 150W QTH lamp
b. Current instability: Xe <0.5%, XQ <0.1%
c. Wavelength range: 300-1800nm (EQE, IQE)
d. High efficient and high reflectivity elliptical reflector system
e. Can provide continuous spectrum from 300-2500 nm
f. Switching mechanism for dual lamp system
g. Switching distance: 75 mm
h. Switching resolution: ±0.05 mm
i. Switching speed: 10~200 mm/s
j. Lamp timer
QE-R-B0505 Minimized Beam Size Module a. Irradiance area: 0.5 mm x 0.5 mm square
b. Optical lens
c. Signal amplifier circuit
d. Secondary magnification ability
QE-R-VB05 Voltage Bias Function a. Voltage bias: 0~±5 V
b. Resolution: 1.22 Mv
c. Software setup function
QE-R-VB10 Voltage Bias Function a. Voltage bias:0~±5 V
b. Resolution: 1.22 Mv
c. Software setup function
QE-R-LB White Light Bias Module a. 150w halogen lamp
b. 0-2 Sun intensity, adjustable
c. 1m fiber
d. Optical lens and mount
e. X axis sliding stage with magnet
f. Safety interlock
g. Cooling system: air cooling
QE-R-DJ Double-junction Measurement Module a. 150w halogen lamp
b. 0-5 Sun intensity, adjustable
c. 1m fiber
d. Optical lens and holder
e. X axis sliding stage with magnet
f. Safety interlock
g. Cooling system: air cooling
h. Two filters: 550nm, 700nm
i. Double-junction measurement software
QE-ST-SI Conductive Plate Sample Stage a. 6” standard gold-plated measurement stage
b. Vacuum absorption function
c. 兩段式真空吸附功能
d. 7 L/min vacuum pump
e. Needle tip: 0.5 mm
f. Platform for reference cell
g. Adjustable balance leg*4, adjustable range: 30 mm
h. BNC connecter
QE-ST-OP Sample Stage for Thin Film a. Standard sample stage for thin film
b. IC clip * 1
c. Three axis micropositioner, distance: ±3mm, resolution: 0.01 mm , can load 10 Kg (maximum)
d. Resolution: 10 um
e. Platform for placing detector
f. 6-channel knob
g. Can support 6 sub-cell (maximum), the distance of each cell should be 2.54 mm
QE-ST-DS Multifunction Thin Film Sample Stage a. Multifunction thin film sample stage
b. IC clip * 2
c. Can measure unilateral sample and bilateral sample
d. Platform for placing detector
e. 6-channel knob
f. Adjustable balance leg * 4, height can be adjustable
g. Can support 6 sub-cell (maximum), the distance of each cell should be 2.54 mm
QE-BT-BOX Back Contact Probe Sample Box a. Back contact probe sample box
b. 0.475 mm round needle tip spring probe
c. Spring probe range: 2mm
d. Upper cover with magnet
e. Customized probe position
f. Can support the sample size: 20 mm (L) x 20 mm (W) x 2 mm (H)
g. Can support 6 sub-cell (maximum)
QE-ST-FL Flip Stage a. The stage platform can rotate 180 degree
b. Z axis probe * 2
c. Sample size should less than 2.5 cm x 2.5 cm
QE-R-FB Optical Fiber Illumination Module a. Measurement range: 300-1100nm
b. Fiber switching bar for user to change the light direction
c. 4.5 M fiber
d. Fiber condensing lens
e. Illumination area: 1mm (diameter)
f. Fiber mount
QE-R-GI Glove Box Integration Kit a. Measurement range: 300-1100nm
b. Fiber switching mechanism. EQE can be tested in the glove box and outside the glove box
c. 4.5 meters fiber
d. KF40 seal flange
e. Fiber condensing lens
f. Illumination area: 1mm (diameter)
g. Light direction from top to bottom< br /> h. Sample stage for the glove box with BNC connector, IC clip and mount for fiber installation
i. Sample channel switch box
j. Black cloth to avoid the stray light
k. XY axis sliding stage
l. XY axis move range is ±12.5 mm, accuracy: 0.01 mm
m. BNC signal connecter
QE-R-mapping Auto-mapping scanning function a. XY axis auto-mapping stage
b. XY axis range: ±100 mm
c. Accuracy: ±0.02 mm
d. Resolution: 2.5 μm
e. Movement mode: auto control
f. Safety protection device
g. Automatic light intensity calibration
h. LBIC measurement function, 2D and 3D display
i. LBIC measurement time: 0.25 S/point
j. Repeatability >±2%
k. Multi-position EQE, IQE measurement function
l. Multi-position coordinates pre-setup function
m. Stage pre-move function
QE-R-MJ LED Multi-junction Solar Cell Measurement Module a. 4 high light intensity LED light bias
b. Automatic software
c. 4 independent channel controller
d. RS232 communication interface
e. Over current and over voltage protection
f. Constant current control mode
g. Input current: 800 mA/Channel
h. Tandem junction automatic measurement function
i. 150 W halogen light bias
j. 1m fiber
k. Optical lens and holder
l. Long pass filter
QE-R-LUP Upward Light Direction Test Function aUpward light direction mode
b. Upward / downward switching knob
c. Banana signal channel
d. Z axis probe * 2


  • Exclusive two DSP dual-phase lock-in amplifiers, which monitors the optical power and measure the device signal simultaneously.
  • Exclusive integrated computer-controlled signal switch can reduce cost for maintenance and consumables.
  • High-efficiency light collection system exceeding 70 % collecting rate and provides accurate and stable measurement.
  • Czerny-Turner multi-gratings monochromator with low stray light ( < 10-5), provides precise and rapid measurement. 
  • Stable lamp system for long testing time and less calibration time.
  • High repeatability over 99.5 %
  • For various types of solar cells measurement.

  • For various types of solar cells measurement.
        Measuring the EQE of Triple Junction Solar Cell by QE-R.

aaa1.jpg

  • The comparison with different structure’s HIT Solar Cell by QE-R.

aaa2.jpg

  • Measuring the EQE of Silicon base Triple Junction Solar Cell by QE-R.

aaa3.jpg

  • Measuring Solar Cell by QE-R is with slighter difference.

aaa4.jpg

Latest 12 publications referencing QE-R


Efficiency enhancement of single-junction GaAs solar cells coated with europium-doped silicate-phosphor luminescent-down-shifting layer

Wen-Jeng Hoa, Wen-Bin Baia, Jheng-Jie Liua, Hung-Pin Shiaob

Thin Solid Films, Available online 20 April 2018


Long Electron–Hole Diffusion Length in High‐Quality Lead‐Free Double Perovskite Films

Weihua Ning, Feng Wang, Bo Wu, Jun Lu, Zhibo Yan, Xianjie Liu, Youtian Tao, Jun‐Ming Liu, Wei Huang, Mats Fahlman, Lars Hultman, Tze Chien Sum, Feng Gao 

Advanced Materials


Fused‐Ring Electron Acceptor ITIC‐Th: A Novel Stabilizer for Halide Perovskite Precursor Solution

Minchao Qin, Jie Cao, Tiankai Zhang, Jiangquan Mai,Tsz‐Ki Lau, Shu Zhou, Yang Zhou, Jiayu Wang, Yao‐Jane Hsu, Ni Zhao, Jianbin Xu, Xiaowei Zhan, Xinhui Lu

Advanced Energy Materials


Synthesis and photovoltaic properties of 2D-conjugated polymers with alkylsilyl-substituted thieno [3, 2-b] thiophene conjugated side chains

Tinghai Yan, Haijun Bin, Chenkai Sun, Zhi-Guo Zhang,Yongfang Li

Organic Electronics, Volume 57, June 2018, Pages 255-262


Extremely low trap-state energy level perovskite solar cells passivated using NH 2-POSS with improved efficiency and stability

Na Liu, Qin Du, Guangzhong Yin, Pengfei Liu, Liang Li, Haipeng Xie, Cheng Zhu, Yujing Li, Huanping Zhou, Wen-Bin Zhang and  Qi Chen

Journal of Materials Chemistry A, Issue 16, 2018


Eliminating JV hysteresis in perovskite solar cells via defect controlling

Wei Chen, Kuan Sun, Chaoyan Ma Chongqian Leng, Jiehao Fu, Lijun Hu, Meng Li, Ming Wang, Zhigang Zang, Xiaosheng Tang, Haofei Shi, Shirong Lu

Organic Electronics, Volume 58, July 2018, Pages 283-289


Stable and Efficient Organo‐Metal Halide Hybrid Perovskite Solar Cells via π‐Conjugated Lewis Base Polymer Induced Trap Passivation and Charge Extraction

Ping‐Li Qin, Guang Yang, Zhi‐wei Ren, Sin Hang Cheung, Shu Kong So, Li Chen, Jianhua Hao, Jianhui Hou, Gang Li

Advanced Materials, Volume 30, Issue 12


A low cost and high performance polymer donor material for polymer 

Chenkai Sun, Fei Pan, Haijun Bin, Jianqi Zhang, Lingwei Xue, Beibei Qiu, Zhixiang Wei, Zhi-Guo Zhang and Yongfang Li

NATURE COMMUNICATIONS, Volume 9, Article number: 743 (2018)


Photovoltaic performance of textured silicon solar cells with MAPbBr3 perovskite nanophosphors to induce luminescent down-shifting

Wen-Jeng Ho, Guan-Yi Li, Jheng-Jie Liu, Zong-Xian Lin, Bang-Jin You, Chun-Hung Ho

Applied Surface Science, Volume 436, 1 April 2018, Pages 927-933


High‐Efficiency and UV‐Stable Planar Perovskite Solar Cells Using a Low‐Temperature, Solution‐Processed Electron‐Transport Layer

Cheng Liu, Yi Yang, Dr. Yong Ding, Prof. Dr. Jia Xu, Dr. Xiaolong Liu, Prof. Dr. Bing Zhang, Prof. Dr. Jianxi Yao, Prof. Dr. Tasawar Hayat, Prof. Dr. Ahmed Alsaedi, Prof. Dr. Songyuan Dai

ChemSusChem, Volume 11, Issue 7


Balancing electrical and optical losses for efficient Si-perovskite 4-terminal solar cells with solution processed percolation electrodes.

César Omar Ramírez Quiroz, Yilei Shen, Michael Salvador, Karen Forberich, Nadine Schrenker, George D. Spyropoulos, Thomas Heumüller, Benjamin Wilkinson, Thomas Kirchartz, Erdmann Spiecker, Pierre J. Verlinden, Xueling Zhang, Martin A. Green, Anita Ho-Baillie  and  Christoph J. Brabec

Journal of Materials Chemistry A, Issue 8, 2018


Slight Structural Disorder in Bithiophene-based Random Terpolymers with Improved Power Conversion Efficiency for Polymer Solar Cells

Meng-Han Wang, Zhong-Yuan Xue, Zhi-Wei Wang, Wei-Hua Ning, Yu Zhong, Ya-Nan Liu, Chun-Feng Zhang, Sven Huettner, You-Tian Tao

Chinese Journal of Polymer Science, pp 1–10



Related Products